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1. Möbius Transformations

Which meromorphic functions C∞ → C∞ are invertible? Clearly they must be

injective (one-to-one), so they have degree 1. That is, f(z) =
az + b

cz + d
for some

a, b, c, d ∈ C. We would like to exclude from this the constant functions (which
clearly are not injective).

To penetrate this question, let us use the fact that f is a constant function if
and only if f ′ is identically zero. Compute

f ′(z) =
a(cz + d)− (az + b)c

(cz + d)2
=
acz + d− acz − bc

(cz + d)2
=

ad− bc
(cz + d)2

.

Thus f(z) is constant if and only if ad− bc = 0.

Definition 1. A linear fractional transformation is a function of the form

S : C∞ → C∞ given by S(z) =
az + b

cz + d
,

for some a, b, c, d ∈ C. Such a function is called a Möbius transformation if ad−bc 6=
0.

Let S(z) =
az + b

cz + d
be a Möbius transformation. We may compute the inverse of

f in the standard way to be

f−1(z) = −dz − b
cz − a

.

In fact, a meromorphic function C∞ → C∞ is invertible if and only if it is a Möbius
transformation. The reader who has been exposed to group theory will recognize
that the set of all Möbius transformations form a group under the operation of
function composition.

We note that the coefficients a, b, c, d are not unique; indeed,

az + b

cz + d
=
λaz + λb

λcz + λd
,

for any λ ∈ C. Actually, though, for any Möbius transformation S, there is a unique

a, b, c, d such that S(z) =
az + b

cz + d
and ad− bc = 1.

Möbius transformations are transformations of the Riemann sphere, and in this
context, we note that

• S(−dc ) =∞, with the caveat that if c = 0, then S(∞) =∞.
• S(∞) = a

c
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2. Primitive Möbius transformations

A Möbius transformation S(z) =
az + b

cz + d
is primitive if it matches one of the

following four types.

• Translation S(z) = z + b
• Dilation S(z) = az where a ∈ R and a > 0
• Rotation S(z) = az where a = cis θ for some θ ∈ R
• Inversion S(z) = 1

z

A function of the form S(z) = kz, where k is an arbitrary complex number, may
be viewed as a composition of a dilation and a rotation, since k = r cis θ for r = |k|
and θ = arg(k).

Proposition 1. A Möbius transformation is a composition of translations, dila-
tions, rotations, and inversions.

Proof. Let S(z) =
az + b

cz + d
be a Möbius transformation.

Suppose c = 0. Then S(z) = a
dz + b

d . Setting S1(z) = a
dz and S2(z) = z + b

d , we
see that S = S2 ◦ S1.

On the other hand, if c 6= 0, we compute that that

S(z) =
bc− ad
c2(z + d

c )
+
a

c
.

Let S1(z) = z + d
c , S2(z) = c2z, S3(z) = 1

z , S4(z) = (bc− ad)z, and S5(z) = z + a
c .

Then S = S5◦S4◦S3◦S2◦S1. So S is a translation, following by a dilation/rotation,
followed by inversion, followed by another dilation/rotation, followed by another
translation. �

Example 1. Find Möbius transformation S(z) =
az + b

cz + d
which acts as the follow-

ing sequence of transformations:

• Translate the plane so that 1 goes to 3
• Dilate the plane by a factor of 2
• Invert the sphere
• Rotate the sphere counterclockwise by 90◦

• Translate the plane so that i goes to 2i

Compute a, b, c, and d.

Solution. Let S1(z) = z + 2, S2 = 2z, S3(z) = 1
z , S4(z) = iz, S5(z) = z + i. Set

S = S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1. Then

S(z) =
i

2z + 4
+ i =

2iz + 5i

2z + 4
.

We have a = 2i, b = 5i, c = 2, and d = 4. �
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3. Circles

Recall the stereographic projection sends circles on the Riemann sphere to lines
and circles on the complex plane.

It is also the case that Möbius transformations send circles to circles, with the
understanding that a line in C can be considered to be a “circle through infinity”.
Thus, if S : C∞ → C∞ has the property that the image of any circle is a circle,
then we will say that S “preserves circles”. Now if S and T both perserve circles,
it is clear that their composition T ◦ S also preserves circles.

Next, we use the fact that any Möbius transformation is a composition of prim-
itive transformations of these types: translations, dilations, rotations, and the in-
version. It is fairly obvious that the first three types preserve lines and circles in
C, so we focus on the inversion.

Let f(z) =
1

z
= u+ iv. Direct computation shows that

1

x+ iy
=

x

x2 + y2
+ i

−y
x2 + y2

,

so u =
x

x2 + y2
and v =

−y
x2 + y2

.

Consider the equation

α(x2 + y2) + βx+ γy = δ,

where α, β, and γ are not all zero. The locus of any line or circle can be written in
this form, any locus of this form is a line or a circle. Divide through by x2 + y2 to
get

α+ β
x

x2 + y2
+ γ

y

x2 + y2
= δ

1

x2 + y2
.

We recognize u and v here; computation show that u2 + y2 =
1

x2 + y2
. Thus this

equation may be rearranged as

α+ βu− γv = δ(u2 + v2),

which becomes
δ(u2 + v2)− βu+ γv = α,

which is the equation of a circle. Thus inversion preserves circles, and therefore, all
Möbius transformations preserve circles.
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4. Fixed Points

Definition 2. Let f : A → A. A fixed point of f is an element a ∈ A such that
f(a) = a.

We investigate the fixed points of a Möbius transformation. Suppose S(z) =
az + b

cz + d
. Then S(w) = w means that

aw + b

cw + d
= w, so aw + b = cw2 + dw, that is,

cw2 + (d− a)w − b = 0.

Solving this equation leads to

w =
a− d±

√
(a− d)2 + 4bc

2c
.

Clearly ∞ is a fixed point if and only if c = 0. In this case, S is linear, and there

is a unique finite fixed point at z =
b

d− a
, unless d = a, in which case b = 0 and S

is the identity given by S(z) = z.
Moreover, when S is not the identity, we see that S has at most two fixed points.
Now suppose that S and T are Möbius transformations which have the same

values at three distinct points. Then T−1 ◦ S also will fix those three points,
which implies that T−1 ◦ S is the identity, so S = T . This shows that a Möbius
transformation is complete determined by its effect on any three points.

Example 2. Find the fixed points of S(z) =
z + 2

3z + 5
.

Solution. If
z + 2

3z + 5
= z, then

3z2 + (5− 1)z − 2 = 0,

so

z =
−4±

√
16 + 24

6
=
−2±

√
10

3
.

�

Example 3. Let S(z) =
az + b

cz + d
where ad − bc 6= 0 and c = 1, and the following

properties:

• S(0) = 0;
• S(1) = 1;
• S(∞) = 2.

Find a, b, c, and d.

Solution. Use each of these conditions:

• Since S(0) =
b

d
= 0, we see that b = 0, so S(z) =

az

z + d
.

• Since S(1) =
a

1 + d
= 1, we see that a = d+ 1.

• Since S(∞) =
a

1
= 2, we see that a = 2, so d = 1.

Thus a = 2, b = 0, c = 1, d = 1; thus

S(z) =
2z

z + 1
.

�
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5. The Cross-Ratio

We know that a Möbius transformation is completely determined by its effect
on any three distinct points in the Riemann sphere. In fact, there is exactly one
Möbius transformation which sends any given ordered triple (z2, z3, z4) ∈ C3 to
another specified ordered triple (w2, w3, w4) ∈ C3.

To see this, we first define a classical notation with historical roots, which we
now describe. If A,B,C,D are points in an affine (think flat) plane, then their
cross-ratio is the number

R(A,B,C,D) =
AC

AD

/BC
BD

,

where PQ represents the signed distance from P to Q. This number has important
implication in projective geometry.

Definition 3. Let z1, z2, z3, z4 ∈ C. The cross ratio of these points is

(z1, z2, z3, z4) =
z1 − z3
z1 − z4

/z2 − z3
z2 − z4

.

Beware, the (standard) notation here is ambiguous. The ordered tuple
(z1, z2, z3, z4) is being a mapped to a value which is identified with the same nota-
tion. You have to discern which meaning is intended from the context.

Note that

• (z2, z2, z3, z4) = 1
• (z3, z2, z3, z4) = 0
• (z4, z2, z3, z4) =∞

To understand the cross-ratio more fully, we select three points z2, z3, and z4,
which we wish to send to 1, 0, and ∞, respectively. The Möbius transformation

S(z) : C∞ → C∞ given by S(z) = (z, z2, z3, z4) =
z − z3
z − z4

/z2 − z3
z2 − z4

has this effect; that is,

• S(z2) = 1
• S(z3) = 0
• S(z4) =∞

Thus S is the unique bijective rational function C∞ → C∞ which sends the order
triple (z2, z3, z4) to the ordered triple (1, 0,∞).

Example 4. If T (z) =
az + b

cz + d
, find z2, z3, z4, written in terms of a, b, c, d, such

that T (z) = (z, z2, z3, z4).

Solution. Since
az2 + b

cz2 + d
= 1, we know that az2 + b = cz2 + d, so (a− d)z2 = d− b,

and z2 =
d− b
a− d

.

Since
az3 + b

cz3 + d
= 0, we know that az3 + b = 0, so z3 = − b

a
.

Since
az4 + b

cz4 + d
=∞, we know that cz4 + d = 0, so z4 = −d

c
. �
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6. Properties of Cross Ratio

It is convenient to suppress some of the traditional function notation when work-
ing with Möbius transformations. We view a Möbius transformation S as “acting
on a point” z ∈ C, and we write Sz to mean S(z). Also, since the composition of
Möbius transformations is a Möbius transformation, we write ST to mean S ◦ T .

Proposition 2. Let z1, z2, z3, z4 ∈ C. Then

(z1, z2, z3, z4) = (z1, z2, z3, z4).

Proof. This follows from the definition of cross ratio, since conjugation splits on
sums, products, and quotients. �

Proposition 3. Let z1, z2, z3, z4 ∈ C, and let S : C∞ → C∞ be a Möbius transfor-
mation. Then

(Sz1, Sz2, Sz3, Sz4) = (z1, z2, z3, z4).

Proof. Let T : C∞ → C∞ be given by T (z) = (z, z2, z3, z4); then T is the unique
Möbius transformation which sends the ordered triple (z2, z3, z4) to the ordered
triple (1, 0,∞).

Consider the Möbius transformation TS−1; this sends the ordered triple
(Sz2, Sz3, Sz4) to (1, 0,∞), and so it is the unique Möbius transformation which
does this. Hence TS−1(z) = (z, Sz2, Sz3, Sz4) for all z ∈ C∞, and in particular,
TS−1(Sz1) = (Sz1, Sz2, Sz3, Sz4). Thus

(Sz1, Sz2, Sz3, Sz4) = TS−1Sz1 = T (z1) = (z1, z2, z3, z4).

�

Proposition 4. Four points in C∞ lie on the same circle if and only if their
cross-ratio is real.

Proof. Let z1, z2, z3, z4 ∈ C∞. We wish to show that these points lie on the same
circle if and only if

(z1, z2, z3, z4) ∈ R∞.
Let C denote the circle which contains z2, z3, and z4. Let T : C∞ → C∞ be

given by T (z) = (z, z2, z3, z4); then T (C) is a circle which contains 1, 0, and ∞, so
T (C) = R∞, and T−1(R∞) = C.

Suppose that z1 ∈ C. Then T (z1) ∈ R∞, that is, (z1, z2, z3, z4) ∈ R∞.
On the other hand, suppose that (z1, z2, z3, z4) ∈ R∞. Then T (z1) ∈ R∞, so

z1 = T−1(T (z1)) ∈ C. �



7

7. Field of Definition

Definition 4. Let T : C∞ → C∞ be a Möbius transformation. We say that T is

defined over R if there exist a, b, c, d ∈ R such that T (z) =
az + b

cz + d
.

Note that it is possible that T is defined over R, but that T is presented with

nonreal coefficients. For example, T (z) =
2iz + 3i

5iz + 7i
is defined over R.

Proposition 5. Let T : C∞ → C∞ be a Möbius transformation. Then T is defined
over R if and only if T (R∞) = R∞.

Proof. Suppose that T is defined over R. Then T (z) =
az + b

cz + d
for some a, b, c, d ∈ R.

Let x ∈ R∞. If x = ∞, then T (x) =
a

c
∈ R∞. If T (x) = ∞, then T (x) ∈

R∞. Otherwise, T (x) =
ax+ b

cx+ d
is a composition of the sums and products of real

numbers, and hence is real.
Conversely, suppose that T (R∞) = R∞. Then T−1(R∞) = R∞. Let z2 =

T−1(1), z3 = T−1(0), and z4 = T−1(∞), noting that z2, z3, z4 ∈ R∞. Then T is
the unique Möbius transformation which maps the ordered triple (z2, z3, z4) onto
the ordered triple (1, 0,∞); this shows that

T (z) =
z − z3
z − z4

/z2 − z3
z2 − z4

.

Since z2, z3, z4 are real, we have written T using only real coefficients, and T is
defined over R. �

Proposition 6. Let T : C∞ → C∞ be a Möbius transformation. Then T is defined
over R if and only if

T (z) = T (z)

for all z ∈ C.

Proof. Suppose T is defined over R. Write T (z) =
az + b

cz + d
, where a, b, c, d ∈ R.

Then

T (z) =
az + b

cz + d
since conjugation splits on sums and products

=
az + b

cz + d
since the coefficients are real

= T (z).

For the converse, we first note that z ∈ R if and only if z = z. So, suppose that
T (z) = T (z) for all z ∈ C. Let x ∈ R. We have

T (x) = T (x) = T (x),

so T (x) is real. Thus T (R∞) = R∞, so T is defined over R. �
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8. Symmetry

Definition 5. Let C be a circle through z2, z3, z4 ∈ C∞. The points z and z∗ are
said to be symmetric with respect to C if

(z∗, z2, z3, z4) = (z, z2, z3, z4).

Proposition 7. The definition of symmetry is independent of the choice of
z2, z3, z4. That is, if the points z2, z3, z4 lie on the same circle as w2, w3, w4, then

(z∗, z2, z3, z4) = (z, z2, z3, z4) if and only if (z∗, w2, w3, w4) = (z, w2, w3, w4).

Proof. Let C be a circle in C∞. Let z2, z3, z4 be three distinct points on C, and let
w2, w3, w4 be another three distinct points on C. Let T : C∞ → C∞ be given by
T (z) = (z, z2, z3, z4), and let S : C∞ → C∞ be given by S(z) = (z, w2, w3, w4). We
may rewrite our goal as

T (z∗) = T (z)⇔ S(z∗) = S(z).

Now T sends (z2, z3, z4) to (1, 0,∞), and S sends (w2, w3, w4) to (1, 0,∞), so
T (C) = R∞ and S(C) = R∞. Thus ST−1 : R∞ → R∞, so ST−1 is defined over R.

Let us assume that T (z∗) = T (z); we wish to show that S(z∗) = S(z). Now

S(z∗) = ST−1(T (z∗)) = ST−1(T (z)) = ST−1T (z) = S(z),

the pivotal third equal sign is attained by the fact that ST−1 is defined over R. �

Proposition 8. Let S be a Möbius transformation. Let z ∈ C∞ and let z and z∗

be symmetric with respect to a circle C. Then S(z) and S(z∗) are symmetric with
respect to the circle S(C).

Proof. Let z2, z3, z4 ∈ C be distinct points on the circle C. Let T (z) = (z, z2, z3, z4).
Then S(z2), S(z3), and S(z4) are distinct point on the circle S(C). Thus, by
Proposition 3,

(Sz∗, Sz2, Sz3, Sz4) = (z∗, z2, z3, z4)

= (z, z2, z3, z4)

= (Sz, Sz2, Sz3, Sz4).

This shows that Sz and Sz∗ are symmetric with respect to C. �

Let C be a circle with center a ∈ C and radius R ∈ R. Let w be a point outside
the circle. Our next goal is to write w∗ as a function of a, R, and w, and to find
a geometric interpretation for this formula (so, we could find the symmetric point
visually).
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Proposition 9. Let C be a circle in C with center a and radius R. Let z ∈ C and
let z and z∗ be symmetric with respect to a circle C. Let z2, z3, z4 ∈ C. Then

z∗ =
R2

z − a
+ a.

Proof. We make repeated use of Propositions 2 and 3:

(z, z2, z3, z4) = (z − a, z2 − a, z3 − a, z4 − a) applying Prop 3 with S(w) = w − a
= (z − a, z2 − a, z3 − a, z4 − a) applying Prop 2

=
(
z − a, R2

z2 − a
,
R2

z3 − a
,
R2

z4 − a

)
using the fact that w =

|w|2

w

=
( R2

z − a
, z2 − a, z3 − a, z4 − a

)
applying Prop 3 with S(w) =

R2

w

=
( R2

z − a
+ a, z2, z3, z4

)
applying Prop 3 with S(w) = w + a

= (z∗, z2, z3, z4) by definition of z∗

Thus z∗ =
R2

z − a
+ a. �

There is a geometric interpretation for symmetry through a circle with center a
and radius R. Let w be a point outside of the circle and draw the two lines through
w and tangent to the circle. The midpoint between the points of tangency is w∗.

To see this, let b be a point of tangency. Then 4abw∗ is similar to 4awb. Thus
|w∗ − a|
|b− a|

=
|b− a|
|w − a|

. Since the radius is R, this gives |w − a||w∗ − a| = R2, so

|w∗ − a| = R2

|w − a|
. Now w∗ is on the line from a to w, and its distance from a is

given above; we multiply both sides by the unit vector from a to w and add a; we
find that

w∗ = a+
w − a
|w − a|

R2

|w − a|
= a+

R2

w − a
.

So, this is the correct interpretation for w∗.
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9. Orientation

Let C be a circle in C with center a and radius R. Then C is parameterized by
a path γ : [0, 2π]→ C given by γ(t) = a+Reπit.

Pick three distinct points on the circle, say zi for i = 2, 3, 4. For each of these,
there exists a unique t ∈ [0, 2π] such that zi = γ(ti). There are six possibilities,
broken into two classes.

• Counterclockwise: t2 < t3 < t4 t3 < t4 < t2 t4 < t2 < t3
• Clockwise: t2 < t4 < t3 t3 < t2 < t4 t4 < t3 < t2

We say that the ordered triple (z2, z3, z4) is either clockwise or counterclockwise
depending on which of these classes it falls into.

Definition 6. An orientation of a circle is an equivalence class of ordered triples
of points on the circle. Denote the equivalence class of (z2, z3, z4) by [z2, z3, z4].

An oriented circle is a circle together with an orientation. If the orientation is
counterclockwise, we say the circle is positively oriented, and that the orientation is a
positive orientation; otherwise, the circle is negatively oriented, and the orientation
is a negative orientation.

So, [z2, z3, z4] may be referred to as either “counterclockwise” (or positively
oriented) or “clockwise” (or negatively oriented).

Definition 7. Let C be a circle in C and let z2, z3, z4 ∈ C be distinct points on
the circle. Let z ∈ C, not on the circle. We say that z is to the right of C with
respect to the orientation [z2, z3, z4] if

Im(z, z2, z3, z4) > 0.

Otherwise it is to the left of C.

Example 5. Let C be an oriented circle, with orientation [z2, z3, z4], where z2 = 1,
z3 = i, and z4 = −1. According to our previous discussion, C is positively oriented.
Let z = 2; we find whether z is to the right or to the left of z.

(z, z2, z3, z4) =
z − z3
z − z4

/z2 − z3
z2 − z4

=
2− i
2 + 1

/ 1− i
1 + 1

=
2

3
· 2− i

1− i
=

3 + i

3
,

so Im(z, z2, z3, z4) =
1

3
> 0, and z is on the right of C.

This indicates that a point is on the right of a positively oriented circle if and
only if it is outside the circle; being outside a circle means being on the same side
of the circle as ∞. We may verify this.

Example 6. Let C be an arbitrary circle with center a ∈ C and radius R ∈ R. Let
z2 = a+Ri, z3 = a−R, and z4 = a+R. Then [z2, z3, z4] is a positive orientation
for the circle. Let z =∞. Compute

(z, z2, z3, z4) =
∞− (a−R)

∞− (a+R)

/ (a+ iR)− (a−R)

(a+ iR)− (a+R)
=
iR−R
iR+R

=
i− 1

i+ 1
=

(i− 1)2

−2
= i.

Thus Im(z, z2, z3, z4) = 1 > 0, so∞ is on the right of this positively oriented circle.

A Möbius transformation T sends the oriented circle C onto a circle oriented by
Tz2, Tz3, and Tz4. From the invariance of the cross-ratio, it follows that the left
and right of C will correspond to the left and right of the image circle.

We know expand our viewpoint to include lines as circles through infinity.
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Suppose that C is the real axis, so that z2, z3, z4 ∈ R. In this case, there exist
a, b, c, d ∈ R such that

(z, z2, z3, z4) =
az + b

cz + d
.

Compute that

Im(z, z2, z3, z4) =
ad− bc
|cz + d|2

· Im z.

So, being to the right or left of C is equivalent to being in the upper or lower half
plane if R∞, depending on the orientation.

Example 7. Let T be the Möbius transformation which maps (1, i,−1) to (1, 0,∞).
Then T (z) = (z, 1, i,−1), and T (z) is to the right of R∞, oriented by [1, 0,∞], if
and only if z is to the right of the positively oriented unit circle. We have already

computed that T (2) = 1 + i
1

3
; so Im(1 + i

1

3
, 1, 0,∞) = Im(2, 1, i,−1) =

1

3
. Thus

the upper half plane is to the right of the real line, when it is oriented from 1 to 0.

What can we say about orientation when the “circle” is a line? From this point
of view, the line is a circle which passes through ∞, so we take z4 = ∞. Now the
orientation of the line is determined by an ordered pair of points.

Suppose L is a straight line. An orientation for L is [z2, z3,∞] where z2, z3 ∈ L.
A point z is to the right if

Im
z − z3
z2 − z3

> 0.

These points lie in the right half plane determined by the oriented line z = z2 +
(z3 − z2)t.

Should we invent a meaning for a positively oriented line?
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10. Angles

If we view two complex numbers v, w ∈ C as vectors, it is clear that the angle

between these vectors is argw − arg v = arg
w

v
.

Let L1 be the line through z1 and z3, and let L2 be the line through z2 and z3.

The angle between these lines is
z1 − z3
z2 − z3

.

Now if we have two oriented circles which intersect, they have well-defined tan-
gent vectors at a point of intersection, and we define the angle between the circles
to be the angle between these tangent vectors.

If the circles are tangent, the angle between them is zero. Consider two circles,
or a line and a circle, which intersect in exactly one point, and let T be a Möbius
transformation which sends that point to ∞. The images of the circles, or the line
and the circle, now intersect only at ∞; that is, they are parallel lines.

Proposition 10. Let C1 and C2 be circles in C∞ which intersection at z3, z4 ∈
C∞. Let z1 ∈ C1 and z2 ∈ C2 be other points. Let [z1, z3, z4] and [z2, z3, z4] be
orientations for C1 and C2, respectively. Then the angle at z3 between C1 and C2

is arg(z1, z2, z3, z4).

Proof. First suppose that z4 =∞, so that C1 and C2 are lines. In this case,

arg(z1, z2, z3, z4) = arg
z1 − z3
z2 − z3

,

which is the angle between the direction vector z1 − z3 and the direction vector
z2 − z3, as desired.

Note that if we apply a Möbius transformation T to C∞, we have

∠C1, C2 = arg(z1, z2, z3, z4) = arg(Tz1, T z2, T z3, T z4) = ∠T (C1), T (C2).

In general, let L1 and L2 be the oriented tangent lines to the circles C1 and C2,
respectively, at the point z3. The angle between L1 and L2 is the angle between C1

and C2. If we apply a Möbius transformation T which sends z4 to ∞, the images
of C1 and L1 are parallel lines, as are the images of C2 and L2. Thus the angle
between T (C1) and T (C2) equals the angle between T (L1) and T (L2), so

∠C1, C2 = ∠L1, L2 = ∠T (L1), T (L2) = ∠T (C1), T (C1) = arg(Tz1, T z2, T z3, T z4) = arg(z1, z2, z3, z4),

the second to last equality is given by the fact that T (C1) and T (C2) are lines. �

Proposition 11. A Möbius transformation preserves angles between oriented cir-
cles.

Proof. Since the angle is the argument of a cross ratio, and this cross ratio is
preserved by a Möbius transformation, the angle is also preserved. �
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